Enhanced inhibition of a mutant neuronal nicotinic acetylcholine receptor by agonists: protection of function by (E)-N-methyl-4-(3-pyridinyl)-3-butene-1-amine (TC-2403).

نویسنده

  • Roger L Papke
چکیده

Inhibition of neuronal nicotinic receptors can be regulated by sequence in the beta subunit second transmembrane domain (TM2). The incorporation of a beta4(6'F10'T) subunit, which contains sequence from the muscle beta subunit at the TM2 6' and 10' positions of the neuronal beta4 subunit, increases the loss of receptor responsiveness after the application of acetylcholine (ACh), nicotine, or 3-(2,4-dimethoxybenzylidene)-anabaseine (DMXB), an alpha7-selective partial agonist. Inhibition of receptor responsiveness following agonist exposure may occur through either an enhancement of desensitization, increased channel block by an agonist, or alternatively via allosteric modulation. Although DMXB produces very little activation of either alpha3beta4 or alpha3beta4(6'F10'T) receptors, DMXB shows an enhanced use-and voltage-dependent inhibition of alpha3beta4(6'F10'T) receptors compared with wild-type. In contrast, the alpha4beta2-selective agonist (E)-N-methyl-4-(3-pyridinyl)-3-butene-1-amine (TC-2403, previously identified as RJR-2403) shows increased activation of alpha3beta4(6'F10'T) receptors compared with alpha3beta4 receptors (as related to ACh activation) but with no significant increase in antagonist activity. The interaction between the binding of local anesthetics and the functional inhibition produced by these agonists was evaluated. The binding of the local anesthetics to their inhibitory sites does not affect inhibitory effects of DMXB and nicotine. However, TC-2403 can protect receptor function from the inhibitory effects of other agonists, suggesting that TC-2403, as well as agonists that cause inhibition, may be binding to an allosteric site, either promoting or inhibiting channel opening. The ability of TC-2403 to protect receptor function from agonist-induced inhibition may point toward valuable new combination drug therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The activation of nicotinic acetylcholine receptors enhances the inhibitory synaptic transmission in the deep dorsal horn neurons of the adult rat spinal cord

Somatosensory information can be modulated by nicotinic acetylcholine receptors (nAChRs) in the superficial dorsal horn of the spinal cord. Nonetheless, the functional significance of nAChRs in the deep dorsal horn of adult animals remains unclear. Using whole-cell patch-clamp recordings from lamina V neurons in the adult rat spinal cord, we investigated whether the activation of nAChRs could m...

متن کامل

Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist.

Metanicotine [N-methyl-4-(3-pyridinyl)-3-butene-1-amine], a novel neuronal nicotinic agonist, was found to bind with high affinity (K(i) = 24 nM) to rat brain [(3)H]nicotine binding sites and it generalized to nicotine in a dose-dependent manner in the drug discrimination procedure. Metanicotine produced significant antinociceptive effects in mice and rats subjected to either acute thermal (tai...

متن کامل

Promoted Neuronal Differentiation after Activation of Alpha4/Beta2 Nicotinic Acetylcholine Receptors in Undifferentiated Neural Progenitors

BACKGROUND Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA) and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal diffe...

متن کامل

The activation and inhibition of human nicotinic acetylcholine receptor by RJR-2403 indicate a selectivity for the alpha4beta2 receptor subtype.

Human nicotinic acetylcholine (ACh) receptor subtypes expressed in Xenopus oocytes were characterized in terms of their activation by the experimental agonist RJR-2403. Responses to RJR-2403 were compared with those evoked by ACh and nicotine. These agonists were also characterized in terms of whether application of the drugs had the effect of producing a residual inhibition that was manifest a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 301 2  شماره 

صفحات  -

تاریخ انتشار 2002